1,693 research outputs found

    Towards understanding resprouting at the global scale

    Get PDF
    Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the Mediterranean biome, there are differences in functional strategies to cope with water deficit between resprouters (dehydration avoiders) and nonresprouters (dehydration tolerators); however, there is little research to unambiguously extrapolate these results to other biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration not only of resprouting, but also other relevant traits (e.g. seeding, bark thickness) and the different correlations among traits observed in different biomes; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome (e.g. crown-fire Mediterranean ecosystems) can guide research in other ecosystems but should not be extrapolated at the global scale.This work was performed under the framework of the TREVOL projects (CGL2012-39938-C02-01 to J.G.P.) from the Spanish Government. A.L.J., R.B.P., A.V. and S.P. were supported by the following grants: IOS-1252232 (NSF), IOS-0845125 (NSF), CGL-2011-30531-CO2-02 (SURVIVE Project, Spain), ID-1120458 (Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT, Chile), respectively

    Unfamiliar Territory: Emerging Themes for Ecological Drought Research and Management

    Get PDF
    Novel forms of drought are emerging globally, due to climate change, shifting teleconnection patterns, expanding human water use, and a history of human influence on the environment that increases the probability of transformational ecological impacts. These costly ecological impacts cascade to human communities, and understanding this changing drought landscape is one of today\u27s grand challenges. By using a modified horizon-scanning approach that integrated scientists, managers, and decision-makers, we identified the emerging issues in ecological drought that represent key challenges to timely and effective responses. Here we review the themes that most urgently need attention, including novel drought conditions, the potential for transformational drought impacts, and the need for anticipatory drought management. This horizon scan and review provides a roadmap to facilitate the research and management innovations that will support forward-looking, co-developed approaches to reduce the risk of drought to our socio-ecological systems during the 21st century. We used a modified horizon-scanning approach that brought together scientists, managers, and decision-makers to identify the emerging issues around the ecological impacts from drought that represent key challenges to effective response. We found three broad themes within ecological drought that need attention, including novel drought conditions, transformational drought impacts, and anticipatory drought management. This horizon scan and integrated review provides a roadmap to inspire the needed research and management innovations to reduce the risk of 21st century droughts

    The SXS Collaboration catalog of binary black hole simulations

    Get PDF
    Accurate models of gravitational waves from merging black holes are necessary for detectors to observe as many events as possible while extracting the maximum science. Near the time of merger, the gravitational waves from merging black holes can be computed only using numerical relativity. In this paper, we present a major update of the Simulating eXtreme Spacetimes (SXS) Collaboration catalog of numerical simulations for merging black holes. The catalog contains 2018 distinct configurations (a factor of 11 increase compared to the 2013 SXS catalog), including 1426 spin-precessing configurations, with mass ratios between 1 and 10, and spin magnitudes up to 0.998. The median length of a waveform in the catalog is 39 cycles of the dominant =m=2\ell=m=2 gravitational-wave mode, with the shortest waveform containing 7.0 cycles and the longest 351.3 cycles. We discuss improvements such as correcting for moving centers of mass and extended coverage of the parameter space. We also present a thorough analysis of numerical errors, finding typical truncation errors corresponding to a waveform mismatch of 104\sim 10^{-4}. The simulations provide remnant masses and spins with uncertainties of 0.03% and 0.1% (90th90^{\text{th}} percentile), about an order of magnitude better than analytical models for remnant properties. The full catalog is publicly available at https://www.black-holes.org/waveforms .Comment: 33+18 pages, 13 figures, 4 tables, 2,018 binaries. Catalog metadata in ancillary JSON file. v2: Matches version accepted by CQG. Catalog available at https://www.black-holes.org/waveform

    The patchwork governance of ecologically available water: A case study in the Upper Missouri Headwaters, Montana, United States

    Get PDF
    Institutional authority and responsibility for allocating water to ecosystems (“ecologically available water” [EAW]) is spread across local, state, and federal agencies, which operate under a range of statutes, mandates, and planning processes. We use a case study of the Upper Missouri Headwaters Basin in southwestern Montana, United States, to illustrate this fragmented institutional landscape. Our goals are to (a) describe the patchwork of agencies and institutional actors whose intersecting authorities and actions influence the EAW in the study basin; (b) describe the range of governance mechanisms these agencies use, including laws, policies, administrative programs, and planning processes; and (c) assess the extent to which the collective governance regime creates gaps in responsibility. We find the water governance regime includes a range of nested mechanisms that in various ways facilitate or hinder the governance of EAW. We conclude the current multilevel governance regime leaves certain aspects of EAW unaddressed and does not adequately account for the interconnections between water in different parts of the ecosystem, creating integrative gaps. We suggest that more intentional and robust coordination could provide a means to address these gaps

    Defining Ecological Drought for the Twenty-First Century

    Get PDF
    THE RISING RISK OF DROUGHT. Droughts of the twenty-first century are characterized by hotter temperatures, longer duration, and greater spatial extent, and are increasingly exacerbated by human demands for water. This situation increases the vulnerability of ecosystems to drought, including a rise in drought-driven tree mortality globally (Allen et al. 2015) and anticipated ecosystem transformations from one state to another—for example, forest to a shrubland (Jiang et al. 2013). When a drought drives changes within ecosystems, there can be a ripple effect through human communities that depend on those ecosystems for critical goods and services (Millar and Stephenson 2015). For example, the “Millennium Drought” (2002–10) in Australia caused unanticipated losses to key services provided by hydrological ecosystems in the Murray–Darling basin—including air quality regulation, waste treatment, erosion prevention, and recreation. The costs of these losses exceeded AUD $800 million, as resources were spent to replace these services and adapt to new drought-impacted ecosystems (Banerjee et al. 2013). Despite the high costs to both nature and people, current drought research, management, and policy perspectives often fail to evaluate how drought affects ecosystems and the “natural capital” they provide to human communities. Integrating these human and natural dimensions of drought is an essential step toward addressing the rising risk of drought in the twenty-first century

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    The challenges of genome-wide interaction studies: Lessons to learn from the analysis of HDL blood levels

    Get PDF
    Genome-wide association studies (GWAS) have revealed 74 single nucleotide polymorphisms (SNPs) associated with high-density lipoprotein cholesterol (HDL) blood levels. This study is, to our knowledge, the first genome-wide interaction study (GWIS) to identify SNP6SNP interactions associated with HDL levels. We performed a GWIS in the Rotterdam Study (RS) cohort I (RS-I) using the GLIDE tool which leverages the massively parallel computing power of Graphics Processing Units (GPUs) to perform linear regression on all genome-wide pairs of SNPs. By performing a meta-analysis together with Rotterdam Study cohorts II and III (RS-II and RS-III), we were able to filter 181 interaction terms with a p-value, 1 · 1028 that replicated in the two independent cohorts. We were not able to replicate any of these interaction term in the AGES, ARIC, CHS, ERF, FHS and NFBC-66 cohorts (Ntotal = 30, 011) when adjusting for multiple testing. Our GWIS resulted in the consistent finding of a possible interaction between rs774801 in ARMC8 (ENSG00000114098) and rs12442098 in SPATA8 (ENSG00000185594) being associated with HDL levels. However, p-values do not reach the preset Bonferroni correction of the p-values. Our study suggest that even for highly genetically determined traits such as HDL the sample sizes needed to detect SNP6SNP interactions are large and the 2-step filtering approaches do not yield a solution. Here we present our analysis plan and our reservations concerning GWIS
    corecore